Dissipative particle dynamics simulations on inversion dynamics of spherical micelles.

نویسندگان

  • Bingbing Hong
  • Feng Qiu
  • Hongdong Zhang
  • Yuliang Yang
چکیده

We simulate the inversion process of a spherical micelle composed of symmetric diblock copolymers by means of dissipative particle dynamics. The evolution of micelle morphology reveals that the inversion is a two-staged process, in which a rapid agglomeration of outer lyophobic blocks occurs first, followed by a slow penetration of inner lyophilic blocks through the porous lyophobic layer. Calculation of the radius of gyration and hydrodynamic radius indicates that an intermediate with a dilute core and a dense shell emerges in the inversion. The characteristic time of inversion scales with the block copolymer chain length with the scaling exponent ranging from 1.67 to 1.89, which can be well described by a simplified chemical-potential-driven flow model. Further simulations incorporating different denaturation times for the two types of blocks indicate the inversions do not experience molecularly scattered states, but form either collapsed intermediates or loosely associated clusters of small sizes. Possible connections of the simulations to the light scattering experiments are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching.

Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the e...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Dissipative particle dynamics simulations of toroidal structure formations of amphiphilic triblock copolymers.

In this paper, the dynamic assembly of toroidal micelle structures of amphiphilic triblock copolymers in dilute solution has been investigated using dissipative particle dynamics simulations. The amphiphilic molecule is represented by a coarse-grained model, which contains hydrophilic and hydrophobic particles. Some microstructures of complex morphology having toroidal micelles have been observ...

متن کامل

Curvature-driven Molecular Demixing in the Budding and Breakup of Mixed Component Worm-like Miscelles

Amphiphilic block copolymers of suitable proportions can self-assemble into surprisingly long and stable worm-like micelles, but the intrinsic polydispersity of polymers as well as polymer blending efforts and the increasing use of degradable chains all raise basic questions of curvature–composition coupling and morphological stability of these high curvature assemblies. Molecular simulations h...

متن کامل

Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation

We critically review dissipative particle dynamics ~DPD! as a mesoscopic simulation method. We have established useful parameter ranges for simulations, and have made a link between these parameters and x-parameters in Flory-Huggins-type models. This is possible because the equation of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 24  شماره 

صفحات  -

تاریخ انتشار 2010